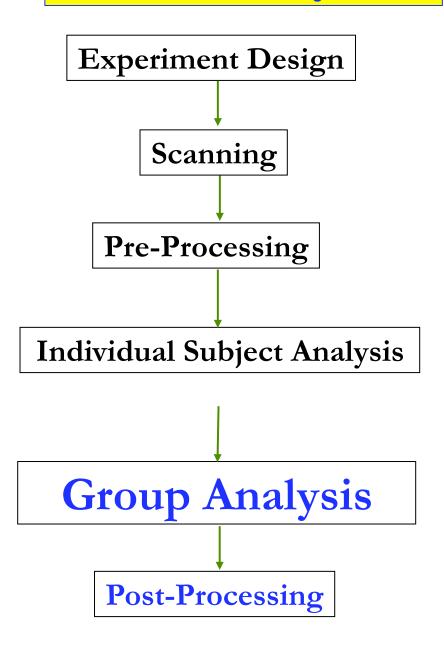
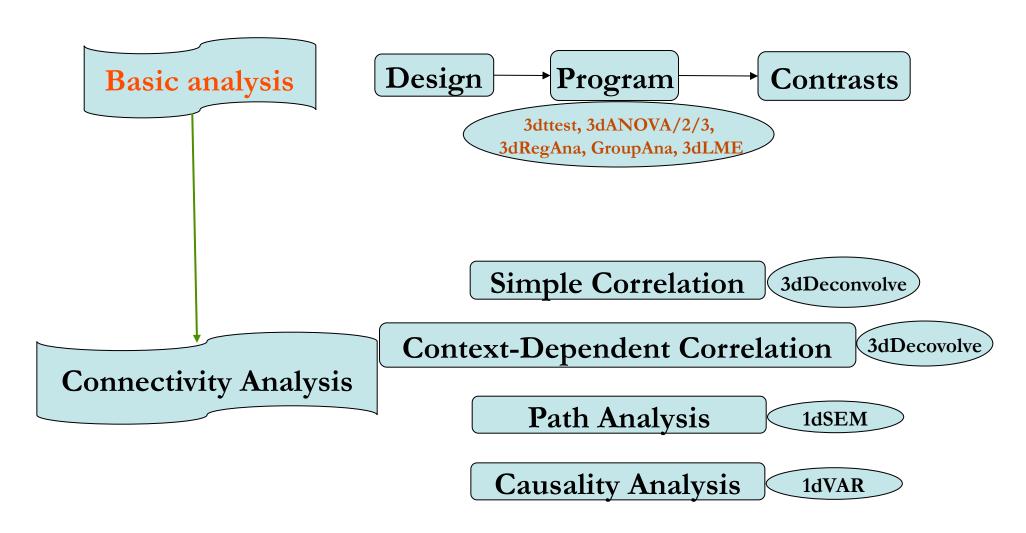
FMRI Analysis



Group Analysis



• Group Analysis: Why and how?

- Group analysis
 - ∠ Make general conclusions about some population, e.g.,
 - ➤ Do men and women differ on responding to fear?
 - ➤ What regions are related to happiness, sad, love, faith, empathy, etc.?
 - ➤ What differs when a person listens to classical music vs. rock 'n' roll?
 - ∠ Partition/untangle data variability into various effects
- Why two tiers of analysis: individual and then group?
 - ∠ No perfect approach to combining both into a batch analysis
 - ∠ Each subject may have slightly different design or missing data
 - ∠ High computation cost
 - u Usually we take β 's (% signal change) to group analysis
 - ➤ Within-subject variation relatively small compared to cross-subject

• Group Analysis: Basic concepts

- Variables
 - L Dependent: percent signal changes (β 's)
 - ∠ Independent
 - ➤ factors: a categorization (variable) of conditions/tasks/subjects
 - ➤ Covariates (IQ, age)

Fixed factor

- ∠ Treated as a fixed variable to be estimated in the model
 - ➤ Categorization of experiment conditions (mode: Face/House)
 - ➤ Group of subjects (male/female, normal/patient)
- ∠ All levels of the factor are of interest and included for replications among subjects
- ∠ Fixed in the sense of inference
 - > apply only to the specific levels of the factor, e.g., the response to face/house is well-defined
 - > don't extend to other potential levels that might have been included, e.g., the response to face/ house doesn't say anything about the response to music

Group Analysis: Basic concepts

Random factor

- ∠ Exclusively refers to subject in FMRI
- ∠ Treated as a random variable in the model
 - > random effects uniquely attributable to each subject: $N(0, \sigma^2)$: σ^2 to be estimated
- ∠ Each subject is of NO interest
- ∠ Random in the sense of inference
 - > subjects serve as a random sample of a population
 - > this is why we recruit a lot of subjects for a study
 - > inferences can be generalized to a population
 - > we usually have to set a long list of criteria when recruiting subjects (right-handed, healthy, age 20-40, native English speaker, etc.)

Covariates

- ∠ Confounding/nuisance effects
 - > Continuous variables of no interest
 - > May cause spurious effects or decrease power if not modeled
 - Some measures about subject: age, IQ, cross-conditions/tasks behavior data, etc.

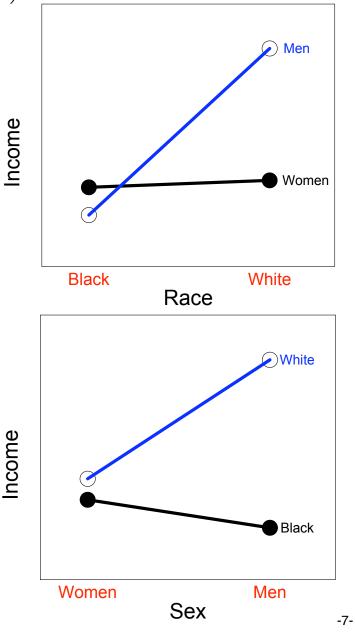
Group Analysis: Types

- Fixed: factor, analysis/model/effects
 - > Fixed-effects analysis (sometimes): averaging among a few subjects
- Non-parametric tests
- Mixed design
 - ➤ Mixed design: <u>crossed</u> [e.g., AXBXC] and <u>nested</u> [e.g., BXC(A)]

 Psychologists: Within-subject (repeated measures) / between-subjects factor
- Mixed-effects analysis (aka random-effects)
 - ∠ ANOVA: contains both types of factors: both inter/intra-subject variances
 - ➤ <u>Crossed</u>, e.g., AXBXC
 - ➤ Nested, e.g., BXC(A)
 - ∠ ANCOVA
 - ∠ LME
 - ➤ Unifying and extending ANOVA and ANCOVA
 - ➤ Using ML or ReML

• Group Analysis: What do we get out of the analysis

- Using an intuitive example of income (dependent variable)
 - ∠ Factor A: sex (men vs. women)
 - ∠ factor B: race (whites vs. blacks)
- Main effect
 - ∠ F: general information about all levels of a factor
 - ∠ Any difference between two sexes or races
 - > men > women; whites > blacks
 - ∠ Is it fair to only focus on main effects?
- Interaction
 - > F: Mutual/reciprocal influence among 2 or more factors
 - > Effect of a factor depends on levels of other factors, e.g.,
 - ➤ Black men < black women
 - ➤ Black women almost the same as white women
 - ➤ Black men << white men
- General linear test
 - ➤ Contrast
 - ➤ General linear test (e.g., trend analysis)



Group Analysis: Types

- Averaging across subjects (fixed-effects analysis)
 - u Number of subjects n < 6
 - ∠ Case study: can't generalize to whole population
 - ∠ Simple approach (3dcalc)

$$> T = \sum t_{ii} / \sqrt{n}$$

∠ Sophisticated approach

$$\Rightarrow B = \sum (b_i/\sqrt{v_i})/\sum (1/\sqrt{v_i}), T = B\sum (1/\sqrt{v_i})/\sqrt{n}, v_i = \text{variance for } i\text{-th regressor}$$

$$> B = \sum (b_i/v_i)/\sum (1/v_i), T = B\sqrt{[\sum (1/v_i)]}$$

> Combine individual data and then run regression

Mixed-effects analysis

- ∠ Random effects of subjects
- ∠ Individual and group analyses: separate
- ∠ Within-subject variation ignored
- ∠ Main focus of this talk

• Group Analysis: Programs in AFNI

- Non-parametric analysis
 - $\angle 4$ < number of subjects < 10
 - ∠ No assumption of normality; statistics based on ranking
 - ∠ Programs
 - **> 3dWilcoxon** (∼ paired *t*-test)
 - **> 3dMannWhitney** (∼ two-sample *t*-test)
 - ➤ 3dKruskalWallis (~ between-subjects with 3dANOVA)
 - ➤ 3dFriedman (~one-way within-subject with 3dANOVA2)
 - > Permutation test
 - ∠ Multiple testing correction with FDR (3dFDR)
 - ∠ Less sensitive to outliers (more robust)
 - ∠ Less flexible than parametric tests
 - ∠ Can't handle complicated designs with more than one fixed factor

• Group Analysis: Programs in AFNI

- Parametric tests (mixed-effects analysis)
 - ∠ Number of subjects > 10
 - ∠ Assumption: Gaussian random effects
 - ∠ Programs
 - ➤ 3dttest (one-sample, two-sample and paired t)
 - ➤ 3dANOVA (one-way between-subject)
 - ➤ 3dANOVA2 (one-way within-subject, 2-way between-subjects)
 - ➤ 3dANOVA3 (2-way within-subject and mixed, 3-way between-subjects)
 - > 3dRegAna (regression/correlation, simple unbalanced ANOVA, simple ANCOVA)
 - > GroupAna (Matlab package for up to 5-way ANOVA)
 - > 3dLME (R package for all sorts of group analysis)

• Group Analysis: Planning for mixed-effects analysis

- How many subjects?
 - Power/efficiency: proportional to √n; n > 10
 - ∠ Balance: Equal number of subjects across groups if possible
- Input files
 - ∠ Common brain in tlrc space (resolution doesn't have to be 1x1x1 mm³)
 - ∠ Percent signal change (not statistics) or normalized variables
 - > HRF magnitude: Regression coefficients
 - \triangleright Linear combinations of β 's
- Analysis design
 - ∠ Number of factors
 - ∠ Number of levels for each factor
 - ∠ Factor types
 - > Fixed (factors of interest) vs. random (subject)
 - ➤ Cross/nesting: Balanced? Within-subject/repeated-measures vs. between-subjects
 - ∠ Which program?
 - > 3dttest, 3dANOVA/2/3, GroupAna, 3dRegAna, 3dLME

• Group Analysis: Planning

- Thresholding
 - ∠ Two-tail by default in AFNI
 - \checkmark If one-tail p is desirable, look for 2p on AFNI
- Scripting 3dANOVA3
 - ∠ Three-way between-subjects (type 1)
 - ➤ 3 categorizations of groups: sex, disease, age
 - **∠** Two-way within-subject (type 4): Crossed design A×B×C
 - ➤ One group of subjects: 16 subjects
 - ➤ <u>Two</u> categorizations of conditions: A category; B affect
 - - > Nesting (between-subjects) factor (A): subject classification, e.g., sex
 - ➤ <u>One</u> category of condition (within-subject factor B): condition (visual vs. auditory)
 - ➤ Nesting: balanced

• Group Analysis: Example – 2-way within-subject ANOVA

```
Model type,
                                                 -clevels 16
3dANOVA3 -type 4 -alevels 3 -blevels 3
                                                                      Factor levels
-dset 1 1 1 stats.sb04.beta+tlrc'[0]' \
                                                             Input for each cell in
-dset 1 2 1 stats.sb04.beta+tlrc'[1]' \
                                                               ANOVA table:
                                                             totally 3X3X16 = 144
-dset 1 3 1 stats.sb04.beta+tlrc'[2]' \
-dset 2 1 1 stats.sb04.beta+tlrc'[4]' \
-fa Category \
                                                              F tests: Main effects &
    Affect \
-fb
                                                                   interaction
-fab CatXAff \
                       \ (coding with indices)
-amean
                                                             t tests: 1<sup>st</sup> order Contrasts
-acontr 1 0 -1 TvsF \((coding with coefficients)\)
          0.5 0.5 -1 non-neu \ (coefficients)
-bcontr
-aBcontr 1 -1 0 : 1 TvsE-pos \ (coefficients)
                                                                t tests: 2<sup>nd</sup> order
                                                                  Contrasts
           2 : 1 -1 0 EPosvsENeg \ (coefficients)
-Abcontr
-bucket anova33
                                                               Output: bundled
```

• Group Analysis: Group Ana

Multi-way ANOVA

- ∠ Matlab script package for up to 5-way ANOVA
- ∠ Can handle both volume and surface data
- ∠ Can handle up to 4-way <u>unbalanced</u> designs
 - ➤ Unbalanced: unequal number of subjects across groups
 - ➤ No missing data from subjects allowed
- ∠ Downsides
 - > Requires Matlab plus Statistics Toolbox
 - > Slow (minutes to hours): <u>GLM</u> approach regression through dummy variables
 - > Complicated design, and compromised power
- ∠ Solution to heavy duty computation
 - > Input with lower resolution recommended
 - > Resample with adwarp -dxyz # or 3dresample
- ∠ See http://afni.nimh.nih.gov/sscc/gangc for more info
- Alternative: **3dLME**

Group Analysis: ANCOVA (ANalysis of COVAriances)

Why ANCOVA?

- ∠ Subjects or cross-regressors effects might not be an ideally randomized
- ∠ If not controlled, such variability will lead to loss of power and accuracy
- ∠ Different from amplitude modulation: cross-regressors vs. within-regressor variation
- ∠ Direct control via design: balanced selection of subjects (e.g., age group)
- ∠ Indirect (statistical) control: add covariates in the model
- ∠ Covariate (variable of no interest): uncontrollable/confounding, usually continuous
 - ➤ Age, IQ, cortex thickness
 - ➤ Behavioral data, e.g., response time, correct/incorrect rate, symptomatology score, ...

ANCOVA = Regression + ANOVA

- ∠ Assumption: linear relation between HDR and the covariate
- ∠ GLM approach: accommodate both categorical and quantitative variables

Programs

- ∠ 3dRegAna: for simple ANCOVA
 - ➤ If the analysis can be handled with 3dttest without covariates
 - > See http://afni.nimh.nih.gov/sscc/gangc/ANCOVA.html for more information

∠ 3dLME: R package

- Linear regression vs. Linear mixed-effects (or hierarchical)
 - ∠R package: Open source platform
 - ∠ Versatile: handles almost all situations in one package
 - ➤ Unbalanced designs (unequal number of subjects, missing data, etc.)
 - > ANOVA and ANCOVA, but unlimited number of factors and covariates
 - ➤ Able to handle HRF modeling with basis functions
 - ➤ Violation of sphericity: heteroscedasticity, variance-covariance structure
 - ➤ Model fine-tuning
 - ∠ No scripting (input is bundled into a text file model.txt)
 - ∠ Disadvantages
 - ➤ High computation cost (lots of repetitive calculation)
 - > Sometimes difficult to compare with traditional ANOVA
 - ∠ See http://afni.nimh.nih.gov/sscc/gangc/lme.html for more information

Linear (Regression) model

- ∠ Only one random-effect compoent, residual €
- Linear mixed-effects (LME) model

$$\mathbf{z}_{jij} = \mathbf{\beta}_0 + \mathbf{\beta}_1 \mathbf{z}_{1ij} + \dots + \mathbf{\beta}_p \mathbf{z}_{pij} + b_{i1} \mathbf{z}_{1ij} + \dots + b_{iq} \mathbf{z}_{qij} + \mathbf{\varepsilon}_{ij},$$

$$b_{ik} \sim N(0, \boldsymbol{\psi}_k^2), \operatorname{cov}(b_k, b_k) = \boldsymbol{\psi}_{kk}, \, \boldsymbol{\varepsilon}_{ij} \sim N(0, \boldsymbol{\sigma}^2 \boldsymbol{\lambda}_{ijj}), \, \operatorname{cov}(\boldsymbol{\varepsilon}_{ij}, \boldsymbol{\varepsilon}_{ij'}) = \boldsymbol{\sigma}^2 \boldsymbol{\lambda}_{ijj'},$$

$$\mathbf{z}_{ij} = X_i \boldsymbol{\beta} + Z_i b_i + \boldsymbol{\varepsilon}_{ij}, \, b_i \sim N_q(0, \, \boldsymbol{\psi}), \, \boldsymbol{\varepsilon}_{i} \sim N_{n_i}(0, \, \boldsymbol{\sigma}^2 \boldsymbol{\lambda}_{ij}), \, \text{for } i \text{th subject}$$

- \mathbf{Z} Two random-effect components: $\mathbf{Z}_i b_i$ nd $\mathbf{\varepsilon}_i$
- ∠ AN(C)OVA can be incorporated as a special case
 - $\triangleright n_i$ is constant (>1, repeated-measures), $\Lambda_i = I_{n \times n}$ (iid)

Running LME

∠ Create a text file model.txt (3 fixed factors plus 1 covariate)

```
Data: Volume
                                     <-- either Volume or Surface
Output: FileName
                                     <-- any string (no suffix needed)
MASK: Mask+tlrc.BRIK
                                     <-- mask dataset
Model:Age+Gender*Object*Modality
                                     <-- model formula for fixed effects
                                     <-- covariate list
COV: Age
RanEff:1
                                     <-- random effects
VarStr:0
CorStr:0
Clusters:4
                                    <-- number of parallel jobs
SS:sequential
MFace-FFace
                                    <-- contrast label
Male*Face*0*0-Female*Face*0*0
                                    <-- contrast specification
MVisual-Maudial
Male*0*Visual*0-Male*0*Audial*0
. . . . . .
Subj
                         Object
                                        Modality
                                                            InputFile
        Gender
                                                     Age
Jim
        Male
                         Face
                                         Visual
                                                     25
                                                            file1+tlrc.BRIK
Carol
       Female
                         House
                                        Audial
                                                     23 file2+tlrc.BRIK
                                                     26
Karl
        Male
                         House
                                        Visual
                                                            file3+tlrc.BRIK
                                        Audial
                                                     24
                                                            file4+tlrc.BRIK
Casey Female
                         Face
```

- HRF modeled with basis functions
 - ∠ Traditional approach: AUC
 - > Hard to detect shape difference
 - > Difficult to handle betas with mixed signs

∠ LME approach

- > Usually $H_0: \beta_1 = \beta_2 = ... = \beta_k \text{ (not } H_0: \beta_1 = \beta_2 = ... = \beta_k = 0)$
- \triangleright But now we don't care about the differences among β 's
- > Instead we want to detect shape difference
- \triangleright Solution: take all β 's and model with no intercept
- > But we have to deal with temporal correlations among β 's, $\Lambda_i \neq I_{mxn}$
- For example, AR(1): 2 parameters σ^2 and ρ for the residuals

$$\sigma^{2} \Lambda_{i} = \begin{pmatrix} \sigma^{2} & \sigma^{2} \rho & \dots & \sigma^{2} \rho^{n_{i}-1} \\ \sigma^{2} \rho & \sigma^{2} & \dots & \sigma^{2} \rho^{n_{i}-2} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma^{2} \rho^{n_{i}-1} & \sigma^{2} \rho^{n_{i}-2} & \dots & \sigma^{2} \end{pmatrix}$$

- Running LME: A more complicated example
 - ∠ HRF modeled with 6 tents
 - ∠ Null hypothesis: no HRF difference between two conditions

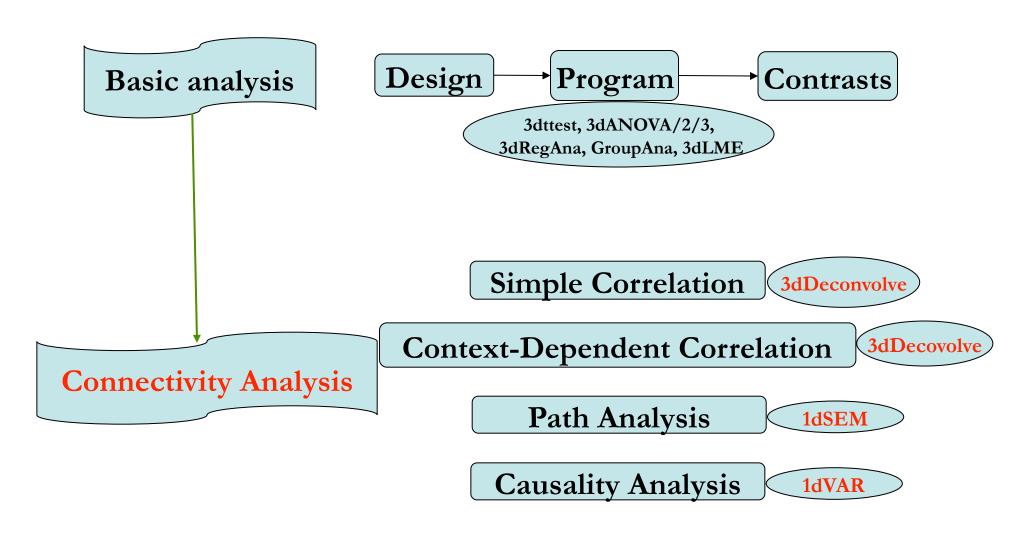
```
Data: Volume
                                     <-- either Volume or Surface
Output:test
                                     <-- any string (no suffix needed)
MASK: Mask+tlrc.BRIK
                                     <-- mask dataset
                                     <-- model formula for fixed effects
Model:Time-1
                                     <-- covariate list
COV:
RanEff:1
                                     <-- random effect specification
VarStr:0
                                     <-- heteroscedasticity?
CorStr:1~TimeOrder|Subj
                                     <-- correlation structure
SS: sequential
                                     <-- sequential or marginal
Clusters: 4
                                     <-- number of parallel jobs
               TimeOrder InputFile
Subj
        Time
Jim
        t.1
                 1 contrastT1+t1rc.BRIK
Jim
        t2
                 2 contrastT2+tlrc.BRIK
Jim
                 3 contrast3+tlrc.BRIK
        t3
```

 $\mathbf{\nu}$ Output: F for H_0 , β and t for each basis function

Group Analysis: 3dttest might be your good friend!

- Example: 2-way mixed ANOVA with unequal subjects
 - ∠ Can't use 3dANOVA3 –type 5
 - ∠ All the t tests can be done with 3dttest
 - ∠ Even main effects and interaction can be obtained for 2×2 design
 - ∠ A: Gender (M vs. F, between-subject); B: stimulus (House vs. Face, within-subject)
 - ∠ Group difference on House: two-sample *t*-test
 - 3dttest -set1 Male1House ... -set2 Female1House ... -prefix GroupHDiff
 - ∠ Gender main effect
 - 3dcalc -a Suject1House -b Subject1Face -expr 'a+b' -prefix Subject1H+F
 - (Or 3dMean -prefix Subj1CaT Suject1House Subject1Face)
 - 3dttest -set1 Male1H+F ... -set2 Female1H+F -prefix HouseEff
 - ∠ Interaction between Gender and Stimulus
 - 3dcalc -a Suject1House -b Subject1Face -expr 'a-b' -prefix Subject1HvsF
 - 3dttest -set1 Male1HvsF ... -set2 Female1HvsF -prefix Interaction

Group Analysis



Connectivity: Correlation Analysis

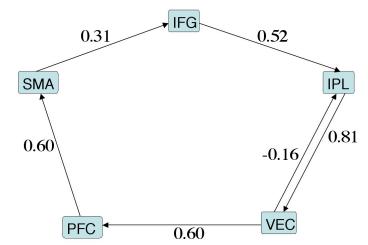
- Correlation analysis (aka functional connectivity)
 - ∠ Similarity between a seed region and the rest of the brain
 - ∠ Says not much about causality/directionality
 - ∠ Voxel-wise analysis; Both individual subject and group levels
 - ∠ Two types: simple and context-dependent correlation (a.k.a. PPI)
- Steps at individual subject level
 - ∠ Create ROI (a sphere around peak t-statistic or an anatomical structure)
 - ∠ Isolate signal for a condition/task
 - ∠ Extract seed time series
 - ∠ Run correlation analysis through regression analysis
 - ∠ More accurately, partial (multiple) correlation
- Steps at group level
 - ∠ Convert correlation coefficients to Z (Fisher transformation): 3dcalc
 - u One-sample t test on Z scores: 3dttest
- Interpretation, interpretation, interpretation!!!
 - ∠ Correlation doesn't mean causation or/and anatomical connectivity
 - ∠ Be careful with group comparison!

Connectivity: Path Analysis or SEM

- Causal modeling (a.k.a. structural or effective connectivity)
 - ∠ Start with a network of ROI's
 - ∠ Path analysis
 - ➤ Assess the network based on correlations (covariances) of ROI's
 - > Minimize discrepancies between correlations based on data and estimated from model
 - ➤ Input: Model specification, correlation matrix, residual error variances, DF
 - > Output: Path coefficients, various fit indices

∠ Caveats

- \triangleright H_0 : It is a good model; Accepting H_0 is usually desirable
- ➤ Valid only with the data and model specified
- ➤ No proof: modeled through correlation analysis
- > Even with the same data, an alternative model might be equally good or better
- > If one critical ROI is left out, things may go awry
- > Interpretation of path coefficient: NOT correlation coefficient, possible >1

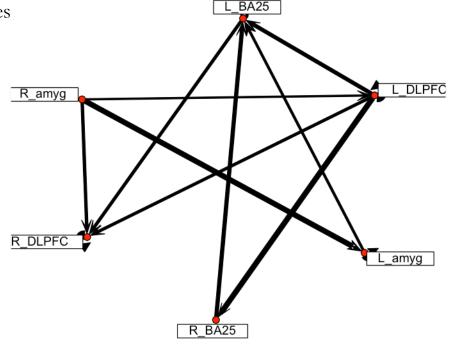


• Connectivity: Path Analysis or SEM

- Path analysis with 1dSEM
 - ∠ Model validation: 'confirm' a theoretical model
 - ➤ Null hypothesis: good model! Accept, reject, or modify the model?
 - ✓ Model search: look for 'best' model
 - > Start with a minimum model (1): can be empty
 - Some paths can be excluded (0), and some optional (2)
 - ➤ Model grows by adding one extra path a time
 - > 'Best' in terms of various fit criteria
 - ∠ More information http://afni.nimh.nih.gov/sscc/gangc/PathAna.html
- P Difference between causal and correlation analysis
 - ∠ Predefined network (model-based) vs. network search (data-based)
 - ∠ Modeling: causation (and directionality) vs. correlation
 - ∠ ROI vs. voxel-wise
 - ∠ Input: correlation (condensed) vs. original time series
 - ∠ Group analysis vs. individual + group

Connectivity: Granger Causality or VAR

- Causal modeling (a.k.a. structural or effective connectivity)
 - ∠ Start with a network of ROI's
 - ∠ Causality analysis through vector auto-regressive modeling (VAR)
 - > Assess the network based on correlations of ROIs' time series
 - > If values of region X provide statistically significant information about future values of Y, X is said to Granger-cause YNetwork with lag = 1
 - ➤ Input: time series from ROIs, covariates (trend, head motion, physiological noise, ...)
 - > Output: Path coefficients, various fit indices
- Causality analysis with 1dGC
 - ∠ Written in R
 - ∠ Can run both interactive and batch mode
 - ∠ Generate a network and path matrix
 - ∠ A list of model diagnostic tests
 - ∠ Run group analysis on path coefficients
- Causality analysis with 3dGC
 - ∠ Seed vs. whole brain



• Connectivity: Granger Causality or VAR

- Causal modeling (a.k.a. structural or effective connectivity)
 - ∠ Caveats
 - > It has assumptions (stationary property, Gaussian residuals, and linearity)
 - > Require accurate region selection: missing regions may invalidate the analysis
 - ➤ Sensitive to number of lags
 - ➤ Time resolution
 - ➤ No proof: modeled through statistical analysis
 - ➤ Not really cause-effect in strict sense
 - > Interpretation of path coefficient: temporal correlation

SEM versus VAR

- ∠ Predefined network (model-based) among ROIs
- ∠ Modeling: statistical causation (and directionality)
- ∠ Input: correlation (condensed) vs. original time series
- ∠ Group analysis vs. individual + group

• Connectivity: Granger Causality or VAR

Why temporal resolution is important?

